Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination

نویسندگان

  • José Miguel Martínez-Martínez
  • Guillermo Booth-Rea
  • José Miguel Azañón
  • Federico Torcal
چکیده

Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest–southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa–Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lithospheric fault and kinematic decoupling of the Apennines system across the Pollino range

Apersistent seismic gap is hypothesized in the Pollino area (southern Italy), at the boundary between the Apennines and the Calabrian arc. Presently, seismic swarms are active in the gap area, creating concerns for possible future large earthquakes. In this study, we model the deep Earth structure across the Pollino range to give new insights on the kinematics and tectonics of this enigmatic ar...

متن کامل

Active tectonic evidences related to the Main Recent Fault in the Sarvabad region, NW Iran

-Introduction The Main Recent Fault (MRF) is a seismic structure on the northwestern boundary of the Zagros belt and southern border of the Sanandaj-Sirjan belt. This fault as a major strike-slip fault consists of several segments in the Zagros collision zone. The seismic activity of the southwestern segments is greater than the northwestern segments. Several earthquake events have occurred al...

متن کامل

Crack Behavior of the Aluminum Alloy 2024 Under Fretting Conditions

The initial stage of fretting fatigue crack growth is significantly influenced by tangential force induced by fretting action along the contact surface where a mixed-mode crack growth is involved. Fretting crack behavior of aluminum alloy 2024 was studied, taking into account the problem of contact asperities. Finite element was used for the determination of the stress field near the contact su...

متن کامل

Activity of the Offshore Newport–Inglewood Rose Canyon Fault Zone, Coastal Southern California, from Relocated Microseismicity

An offshore zone of faulting approximately 10 km from the southern California coast connects the seismically active strike-slip Newport–Inglewood fault zone in the Los Angeles metropolitan region with the active Rose Canyon fault zone in the San Diego area. Relatively little seismicity has been recorded along the offshore Newport–Inglewood Rose Canyon fault zone, although it has long been suspe...

متن کامل

Multiple phases of Tertiary extension and synextensional deposi- tion of the Miocene–Pliocene Salt Lake Formation in an evolving supradetachment basin, Malad Range, southeast Idaho, U.S.A

The extensional history of the Malad and Bannock ranges in southeast Idaho and northern Utah involves multiple phases of Tertiary normal faulting and synextensional deposition. Detailed geologic mapping, structural and stratigraphic analyses, and geochronologic data from this study elucidate previously defined deformational events in the region, and define two new extensional episodes. The larg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006